onmceo 'l‘omcs IN
SOFTWARE Euemsmme

n this part of Software Ehgineering: A Practitioner’s Approach, we

consider a number of advanced topics that will extend yourun- . -

derstanding of software engineering. In the chapters that fol-
low, we address the following questions:

e What notation and mathematical préliminaries (“formal
methods”) are required to formally specify software?

» What key technical activities are conducted during the clean—
room software engineering process?

* How is component-based software engmeenng used to cma@te; w
systems from reusable components? ¥

» What technical activities are requxred for software reengx-?f
neering?

* What are the future directions of software engmeenng?

Once these questions are answered, you'll understand topics '
that may have a profound impact on software engmeermg over the
next decade.
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8 FORMAL METHODS
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oftware engineering methods can be categorized on a “fo

that is loosely tied to the degree of mathematical rigor applied during analy-

sis and design. For this reason, the analysis and design methods discussed
earlier in this book fall at the informal end of the spectrum. A combination of di-
agrams, text, tables, and simple notation is used to create analysis and design
models, but little mathematical rigor has been applied.

We now consider the other end of the formality spectrum. Here, a specification
and design are described using a formal syntax and semantics that specify system
function and behavior. The specification is mathematical in form (e.g., predicate
calculus can be used as the basis for a formal specification language).

In his introductory discussion of formal methods, Anthony Hall [HAL90] states:

Formal methods are controversial. Their advocates claim that they can revolutionize
[software] development. Their detractors think they are impossibly difficult. Mean-
while, for most people, formal methods are so unfamiliar that it is difficuit to judge the
competing claims.

In this chapter, we explore formal methods and examine their potential impact
on software engineering in the years to come.

ils. In such situations, it is essential that errors
fore software is put into oper-
. Formal methods reduce specification er-
rors dromatically and, as a consequence, serve

the bcsls for soﬁwore that has very few errors

Who does it? Aspecmﬁyfruwmé oftw
neercrectescﬁormalspem ion

mission-critical systems, failure can have o
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How do | ensure that |
Because formal methods use discrefe math
ics as the specification mechanism, logic proofs:
can be applied-to each system function- to-

demonsirate !hot ﬁ\e spec*flooﬂon is correct.
‘ even if logic proofs are not used, the
fructure and discipline of a formal spec:ﬁcuhon
w*iﬁimd@ mpmvm[ m&were quality.

—28.1 BASIC CONCEPTS

The Encyclopedia of Software Engineering [MAR94] defines formal methods in the fol-
lowing manner:

A method is formal if it has a sound mathematical basis, typically given by a formal spec-
ification language. This basis provides a means of precisely defining notions like consis-
tency and completeness, and more relevantly, specification, implementation and
correctness.

The desired properties of a formal specification—consistency, completeness, and
lack of ambiguity—are the objectives of all specification methods. However, the use
of formal methods results in a much higher likelihood of achieving these ideals. The
formal syntax of a specification language (Section 28.4) enables requirements and
design to be interpreted in only one way, eliminating ambiguity that often occurs
when a natural language (e.g., English) or a graphical notation must be interpreted
by a reader. The descriptive facilities of set theory and logic notation (Section 28.2)
enable clear statement of facts (requirements). To be consistent, facts stated in one
place in a specification should not be contradicted in another place. Consistency is
ensured by mathematically proving that initial facts can be formally mapped (using
inference rules) into later statements within the specification.

“Formal methods have tremendous potential for improving the clarity and precision of requirements specifications,
and in finding important and subtle errors.”

Steve Easterbrook et al.

Completeness is difficult to achieve, even when formal methods are used. Some
aspects of a system may be left undefined as the specification is being created; other
characteristics may be purposely omitted to allow designers some freedom in
choosing an impiementation approach; and finally, it is impossible to consider every
operational scenario in a large, complex system. Things may simply be omitted by
mistake.

Although the formalism provided by mathematics has an appeal to some software
engineers, others (some would say, the majority) look askance at a mathematical
view of software development. To understand why a formal approach has merit, we
must first consider the deficiencies associated with less formal approaches.
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28.1.1 Deficiencies of Less Formal Approaches!

The methods discussed for analysis and design in Parts 2 and 3 of this book make
heavy use of natural language and a variety of graphical notations. Although careful
application of analysis and design methods coupled with thorough review can and
does lead to high-quality software, sloppiness in the application of these methods
can create a variety of problems. A system specification can contain contradictions,
ambiguities, vagueness, incomplete statements, and mixed levels of abstraction.

Contradictions are sets of statements that are at variance with each other. For ex-
ample, one part of a system specification may state that the system must monitor all
the temperatures in a chemical reactor while another part, perhaps written by an-
other person may state that only temperatures occurring within a certain range are
to be monitored.

Ambiguities are statements that can be interpreted in a number of ways. For ex-
ample, the following statement is ambiguous:

The operator identity consists of the operator name and password; the password consists
of six digits. It should be displayed on the security VDU and deposited in the login file
when an operator logs into the system.

In this extract, does the word it refer to the password or the operator identity?
Vagueness often occurs because a system specification is a very bulky document.
Achieving a high level of precision consistently is an almost impossible task.

: “ng misiakes is human, Repeating ‘em is too.”

jodr

Malcolm Forbes

Incompleteness is one of the most frequently occurring problems with system
specifications. For example, consider the functional requirement:

The system should maintain the hourly level of the reservoir from depth sensors situated
in the reservoir. These values should be stored for the past six months.

This describes the main data storage part of a system. If one of the commands for
the system was

The function of the AVERAGE command is to display on a PC the average water level for
a particular sensor between two times.

and assuming that no more detail was presented for this command, the details of the
command would be seriously incomplete. For example, the description of the com-
mand does not include what should happen if a user of a system specifies a time that
was more than six months before the current hour.

1 This section and others in the first part of this chapter have been adapted from work contributed
by Darrel Ince for the European edition of the fifth edition of Software Engineering: A Practitioner’s
Approach.
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Mixed levels of abstraction occur when very abstract statements are intermixed ran-
domly with statements that are at a much lower level of detail. While both types of
statements are important in a system specification, specifiers often manage to inter-
mix them to such an extent that it becomes very difficult to see the overall functional
architecture of a system.

28.1.2 Mathematics in Software Development

Mathematics has many useful properties for the developers of large systems. One is
that it can succinctly and exactly describe a physical situation, an object, or the out-
come of an action. A specification of a computer-based system can be developed us-
ing specialized mathematics in much the same way that an electrical engineer can
use mathematics to describe a circuit.?

Mathematics supports abstraction and thus is an excellent medium for modeling.
Because it is an exact medium there is little possibility of ambiguity. Specifications can
be mathematically validated for contradictions and incompleteness, and vagueness
can be eliminated. In addition, mathematics can be used to represent levels of ab-
straction in a system specification in an organized way.

Finally, mathematics provides a high level of validation when it is used as a soft-
ware development medium. It is possible to use a mathematical proof to demonstrate
that a design matches a specification and that program code is a correct reflection of
a design.

28.1.3 Formal Methods Concepts

The aim of this section is to present the main concepts involved in the mathematical
specification of software systems, without encumbering the reader with too much
mathematical detail. To accomplish this, we use a few simple examples.

Example 1: a symbol table. A program is used to maintain a symbol table. Such
a table is used frequently in many different types of applications. It consists of a col-
lection of items without any duplication. An example of a typical symbol table is
shown in Figure 28.1. It represents the table used by an operating system to hold the
names of the users of the system. Other examples of tables include the collection of
names of staff in a payroll system or the collection of names of computers in a net-
work communications system.

Assume that the table presented in this example consists of no more than MaxIds
members of staff. This statement, which places a constraint on the table, is a com-
ponent of a condition known as a data invariant—an important idea that we shall re-
turn to throughout this chapter.

2 A word of caution is appropriate at this point. The mathematical system specifications that are pre-
sented in this chapter are not as succinct as a mathematical specification for a simple circuit. Soft-
ware systems are notoriously complex, and it would be unrealistic to expect that they could be
specified in one line of mathematics.
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A data invariant is a condition that is true throughout the execution of the system
that contains a collection of data. The data invariant that holds for the symbol table
just discussed has two components: (1) that the table will contain no more than
Maxlds names and (2) that there will be no duplicate names in the table. In the case
of the symbol table program, this means that no matter when the symbol table is ex-
amined during execution of the system, it will always contain no more than Maxlds
staff identifiers and will contain no duplicates.

Another important concept is that of a state. Many formal languages, such as OCL
(Section 28.5) , use the notion of a state as it was discussed in Chapters 7 and 8; that
is, a system can be in one of several states, each representing an externally observ-
able mode of behavior. However, a different definition for the term state is used in
the Z language (Section 28.6). In Z (and related languages), the state of a system is
represented by the system’s stored data (hence, Z suggests a much larger number of
states, representing each possible configuration of the data). Using the latter defini-
tion in the example of the symbol table program, the state is the symbol table.

The final concept is that of an operation. This is an action that takes place within a
system and reads or writes data. If the symbol table program is concerned with adding
and removing staff names from the symbol table, then it will be associated with two
operations: an operation to add a specified name to the symbol table and an opera-
tion to remove an existing name from the table.” If the program provides the facility
to check whether a specific name is contained in the table, then there would be an
operation that would return some indication of whether the name is in the table.

Three types of conditions can be associated with operations: invariants, precon-
ditions, and postconditions. An invariant defines what is guaranteed not to change.
For example, the symbol table has an invariant that states that the number of ele-
ments is always less than or equal to Maxids. A precondition defines the circum-

3 1t should be noted that adding a name cannot occur in the full state and deleting a name is impos-
sible in the empty statc.
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stances in which a particular operation is valid. For example, the precondition for an
operation that adds a name to the staff identifier symbol table is valid only if the
name that is to be added is not contained in the table and also if there are fewer than
Maxlds staff identifiers in the table. The postcondition of an operation defines what is
guaranteed to be true upon completion of an operation. This is defined by its effect
on the data. In the example of an operation that adds an identifier to the staff iden-
tifier symbol table, the postcondition would specify mathematically that the table has
been augmented with the new identifier.

Example 2: a block handler. One of the more important parts of a computer’s
operating system is the subsystem that maintains files created by users. Part of the
filing subsystem is the block handler. Files in the file store are composed of blocks
of storage that are held on a file storage device. During the operation of the com-
puter, files will be created and deleted, requiring the acquisition and release of
blocks of storage. To cope with this, the filing subsystem will maintain a reservoir
of unused (free) blocks and keep track of blocks that are currently in use. When
blocks are released from a deleted file they are normally added to a queue of blocks
waiting to be added to the reservoir of unused blocks. This is shown in Figure 28.2.
In this figure, a number of components are shown: the reservoir of unused blocks,
the blocks that currently make up the files administered by the operating system,
and those blocks that are waiting to be added to the reservoir. The waiting blocks
are held in a queue, with each element of the queue containing a set of blocks from
a deleted file.

For this subsystem the state is the collection of free blocks, the collection of used
blocks, and the queue of returned blocks. The data invariant, expressed in natural
language, is:

e No block will be marked as both unused and used.
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o All the sets of blocks held in the queue will be subsets of the collection of
currently used blocks.

e No elements of the queue will contain the same block numbers.

e The collection of used and unused blocks will be the total collection of blocks
that make up files.

e The collection of unused blocks will have no duplicate block numbers.

e The collection of used blocks will have no duplicate block numbers.

Some of the operations associated with the data invariant are: add() a collection of
blocks to the end of the queue, remove() a collection of used blocks from the front of
the queue and place them in the collection of unused blocks, and check() whether the
queue of blocks is empty.

The precondition of the first operation is that the blocks to be added must be in
the collection of used blocks. The postcondition is that the collection of blocks is now
found at the end of the queue. The precondition of the second operation is that the
queue must have at least one item in it. The postcondition is that the blocks must be
added to the collection of unused blocks. The final operation—checking whether the
queue of returned blocks is empty—has no precondition. This means that the oper-
ation is always defined, regardless of what value the state is. The postcondition de-
livers the value true if the queue is empty and false otherwise.

In the examples noted in this section, we introduce the key concepts of formal spec-
ification. But we do so without emphasizing the mathematics that are required to make
the specification formal. In Section 28.2, we consider these mathematics.

To apply formal methods effectively, a software engineer must have a working
knowledge of the mathematical notation associated with sets and sequences and the
logical notation used in predicate calculus. The intent of the section is to provide a
brief introduction. For a more detailed discussion the reader is urged to examine
books dedicated to these subjects (e.g., [WIL87], [GRI93], and [ROS95]).

28.2.1 Sets and Constructive Specification

A set is a collection of objects or elements and is used as a cornerstone of formal
methods. The elements contained within a set are unique (i.e., no duplicates are al-
lowed). Sets with a small number of elements are written within curly brackets
(braces) with the elements separated by commas. For example, the set

{C++, Smalltalk, Ada, COBOL, Java}

contains the names of five programming languages.
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The order in which the elements appear within a set is immaterial. The number of
items in a set is known as its cardinality. The # operator returns a set's cardinality. For
example, the expression

#A B, C, D=4

implies that the cardinality operator has been applied to the set shown with a result
indicating the number of items in the set.

There are two ways of defining a set. A set may be defined by enumerating its el-
ements (this is the way in which the sets just noted have been defined). The second
approach is to create a constructive set specification. The general form of the mem-
bers of a set is specified using a Boolean expression. Constructive set specification
is preferable to enumeration because it enables a succinct definition of large sets. It
also explicitly defines the rule that was used in constructing the set. Consider the fol-
lowing constructive specification example:

(n:Nin<3en)

This specification has three components, a signature, n : N, a predicate n < 3, and a
term, n. The signature specifies the range of values that will be considered when
forming the set; the predicate (a Boolean expression) defines how the set is to be con-
stricted; and, finally, the term gives the general form of the item of the set. In the ex-
ample above, N stands for the natural numbers; therefore, natural numbers are to be
considered. The predicate indicates that only natural numbers less than 3 are to be
included; and the term specifies that each element of the set will be of the form n.
Therefore, this specification defines the set

{0, 1,2}

When the form of the elements of a set is obvious, the term can be omitted. For ex-
ample, the preceding set could be specified as

(n:NI1n<3}

All the sets that have been described here have elements that are single items. Sets
can also be made from elements that are pairs, triples, and so on. For example, the
set specification

X, y:NIx+y=100e( y)
describes the set of pairs of natural numbers that have the form (x, y?) and where the
sum of x and y is 10. This is the set

{(1,81), (2, 64), (3,49), .. )

Obviously, a constructive set specification required to represent some component
of computer software can be considerably more complex than those noted here.
However, the basic form and structure remain the same.
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28.2.2 Set Operators

A specialized symbology is used to represent set and logic operations. These sym-
bols must be understood by the software engineer who intends to apply formal
methods.

The e operator is used to indicate membership of a set. For example, the expression

xXe X

has the value true if x is a member of the set X and the value false otherwise. For ex-
ample, the predicate

12 €6, 1, 12, 22}

has the value true since 12 is a member of the set.
The opposite of the € operator is the ¢ operator. The expression

xe X

has the value true if x is not a member of the set X and false otherwise. For example,
the predicate

13¢ {13, 1, 124, 22}

has the value false.
The operators C, and C, take sets as their operands. The predicate

ACB

has the value true if the members of the set A are contained in the set B and has the
value false otherwise. Thus, the predicate

{1,2)C{4,3,1,2)
has the value frue. However, the predicate
{HD1, LP4, RC5}) C {HDI1, RC2, HD3, LP1, LP4, LP6}

has a value of false because the element RC5 is not contained in the set to the right
of the operator.

The operator C is similar to C. However, if its operands are equal, it has the value
true. Thus, the value of the predicate

{HDI, LP4, RC5} C {HDI, RC2, HD3, LP1, LP4, LP6}
is false, and the predicate
{HDI1, LP4, RC5} C {HDI1, LP4, RC5}

is true.
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“Mathematical structures are among the most beautiful discoveries made by the human mind.”
Douglas Hofstadter

A special set is the empty set @. This corresponds to zero in normal mathematics.
The empty set has the property that it is a subset of every other set. Two useful iden-
tities involving the empty set are

UA=Aand @ NA=0

for any set A, where U is known as the union operator, sometimes known as cup; N
is the intersection operator, sometimes known as cap.

The union operator takes two sets and forms a set that contains all the elements
in the set with duplicates eliminated. Thus, the result of the expression

{Filel, File2, Tax, Compiler} U {NewTax, D2, D3, File2}
is the set
{Filel, File2, Tax, Compiler, NewTax, D2, D3}

The intersection operator takes two sets and forms a set consisting of the common
elements in each set. Thus, the expression

{12,4,99, 1} n {1,13, 12,77}

results in the set {12, 1}.

The set difference operator, \, as the name suggests, forms a set by removing the
elements of its second operand from the elements of its first operand. Thus, the value
of the expression

{New, Old, TaxFile, SysParam} \ {Old, SysParam}

results in the set {New, TaxFile}.
The value of the expression

{a,b,c,d} N {x, v}

will be the empty set @. The operator always delivers a set; however, in this case
there are no common elements between its operands, so the resulting set will have
no elements.

The final operator is the cross product, X, sometimes known as the Cartesian prod-
uct. This has two operands which are sets of pairs. The result is a set of pairs where
each pair consists of an element taken from the first operand combined with an el-
ement from the second operand. An example of an expression involving the cross
product is

{1, 2} X {4, 5, 6}
The result of this expression is

{(1,4), (1,9),(1,6), (2,4, 2,5), (2, 6)}
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Notice that every element of the first operand is combined with every element of the
second operand.

A concept that is important for formal methods is that of a powerset. A powerset
of a set is the collection of subsets of that set. The symbol used for the powerset op-
erator in this chapter is P. It is a unary operator that, when applied to a set, returns
the set of subsets of its operand. For example,

P{I1, 2,3} = {2 {1}, {2}, {3), {1, 2}, {1, 3}, (2, 3}, {1, 2, 3}}

since all the sets are subsets of {1, 2, 3}.

28.2.3 Logic Operators

Another important component of a formal method is logic: the algebra of true and
false expressions. The meaning of common logical operators is well understood by
every software engineer. However, the logic operators that are associated with com-
mon programming languages are written using readily available keyboard symbols.
The equivalent mathematical operators to these are

AN and

\/ or

= not

= implies

Universal quantification is a way of making a statement about the elements of a set
that is true for every member of the set. Universal quantification uses the symbol, V.
An example of its use is

VijNei>j=i’>)?

which states that for every pair of values in the set of natural numbers, if i is greater
than j, then i is greater than /2.

28.2.4 Sequences

A sequence is a mathematical structure that models the fact that its elements are or-
dered. A sequence s is a set of pairs whose elements range from 1 to the highest-
number element. For example,

{(1, Jones), (2, Wilson), (3, Shapiro), (4, Estavez)}

is a sequence. The items that form the first elements of the pairs are collectively
known as the domain of the sequence, and the collection of second elements is
known as the range of the sequence. In this book, sequences are designated using
angle brackets. For example, the preceding sequence would normally be written as
(Jones, Wilson, Shapiro, Estavez).

Unlike sets, duplication in a sequence is allowed, and the ordering of a sequence
is important. Therefore,
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(Jones, Wilson, Shapiro) # (Jones, Shapiro, Wilson)

The empty sequence is represented as ().

A number of sequence operators are used in formal specifications. Catenation, -,
is a binary operator that forms a sequence constructed by adding its second operand
to the end of its first operand. For example,

(2, 3,34, 1) (12, 33, 34, 200).

results in the sequence (2, 3, 34, 1, 12, 33, 34, 200).

Other operators that can be applied to sequences are head, tail, front, and last.
The operator head extracts the first element of a sequence; tail returns with the last
n — 1 elements in a sequence of length n; last extracts the final element in a se-
quence; and front returns with the first n — 1 elements in a sequence of length n.
For example,

head (2, 3,34, 1,99, 101) = 2
tail (2, 3, 34, 1,99, 101) = (3, 34, 1,99, 101)
last (2, 3, 34, 1,99, 101) = 101

front (2,3, 34, 1,99, 101) = (2, 3, 34, 1, 99)

Since a sequence is a set of pairs, all set operators described in Section 28.2.2 are
applicable. When a sequence is used in a state, it should be designated as such by
using the keyword seq. For example,

FileList : seq FILES
NoUsers : N

describes a state with two components: a sequence of files and a natural number.

28.3 APPLYING MATHEMATICAL NOTATION FOR FORMAL

To illustrate the use of mathematical notation in the formal specification of a software
component, we revisit the block handler example presented in Section 28.1.3. To re-
view, an important component of a computer’s operating system maintains files that
have been created by users. The block handler maintains a reservoir of unused blocks
and will also keep track of blocks that are currently in use. When blocks are released
from a deleted file they are normally added to a queue of blocks waiting to be added
to the reservoir of unused blocks. This has been depicted schematically in Figure 28.2.4

A set named BLOCKS will consist of every block number. AllBlocks is a set of
blocks that lie between 1 and MaxBlocks. The state will be modeled by two sets and
a sequence. The two sets are used and free. Both contain blocks—the used set

4 If your recollection of the block handler example is hazy, please return to Section 28.1.3 to review
the data invariant, operations, preconditions and postconditions associated with the block handler.
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contains the blocks that are currently used in files, and the free set contains blocks
that are available for new files. The sequence will contain sets of blocks that are
ready to be released from files that have been deleted. The state can be described as

used, free: P BLOCKS
BlockQueue: seq P BLOCKS

This is very much like the declaration of program variables. It states that used and
free will be sets of blocks and that BlockQueue will be a sequence, each element of
which will be a set of blocks. The data invariant can be written as

used N free = @ N

used U free = AllBlocks /\

V i: dom BlockQueue ¢ BlockQueue i C used N\

Y i, j: dom BlockQueue ¢ i | j = BlockQueue i N BlockQueue j = &

The mathematical components of the data invariant match four of the bulleted,
natural-language components described earlier. The first line of the data invari-
ant states that there will be no common blocks in the used collection and free col-
lections of blocks. The second line states that the collection of used blocks and
free blocks will always be equal to the whole collection of blocks in the system.
The third line indicates the ith element in the block queue will always be a subset
of the used blocks. The final line states that, for any two elements of the block
queue that are not the same, there will be no common blocks in these two ele-
ments. The final two natural language components of the data invariant are im-
plemented by virtue of the fact that used and free are sets and therefore will not
contain duplicates.

The first operation we shall define is one that removes an element from the head of
the block queue. The precondition is that there must be at least one item in the queue:

#BlockQueue > 0,

The postcondition is that the head of the queue must be removed and placed in the
collection of free blocks and the queue adjusted to show the removal:

used’ = used \ head BlockQueue /\
free’ = free U head BlockQueue /\
BlockQueue’ = tail BlockQueue

A convention used in many formal methods is that the value of a variable after an
operation is primed. Hence, the first component of the preceding expression states
that the new used blocks (used’) will be equal to the old used blocks minus the blocks
that have been removed. The second component states that the new free blocks
(free’) will be the old free blocks with the head of the block queue added to it. The
third component states that the new block queue will be equal to the tail of the old
value of the block queue; that is, all elements in the queue apart from the first one.
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A second operation adds a collection of blocks, Ablocks, to the block queue. The pre-
condition is that Ablocks is currently a set of used blocks:

Ablocks C used

The postcondition is that the set of blocks is added to the end of the block queue, and
the set of used and free blocks remains unchanged:

BlockQueue’ = BlockQueue - (Ablocks) A
used’ = used /\

Jfree’ = free

There is no question that the mathematical specification of the block queue is con-
siderably more rigorous than a natural language narrative or a graphical model. The
additional rigor requires effort, but the benefits gained from improved consistency
and completeness can be justified for many types of applications.

A formal specification language is usually composed of three primary components:
(1) a syntax that defines the specific notation with which the specification is repre-
sented, (2) semantics to help define a “universe of objects” [WIN90] that will be used
to describe the system, and (3) a set of relations that define rules that indicate which
objects properly satisfy the specification.

The syntactic domain of a formal specification language is often based on a syn-
tax that is derived from standard set theory notation and predicate calculus. For ex-
ample, variables such as x, y, and z describe a set of objects that relate to a problem
(sometimes called the domain of discourse) and are used in conjunction with the op-
erators described in Section 28.2. Although the syntax is usually symbolic, icons
(e.g., graphical symbols such as boxes, arrows, and circles) can also be used, if they
are unambiguous.

The semantic domain of a specification language indicates how the language rep-
resents system requirements. For example, a programming language has a set of
formal semantics that enables the software developer to specify algorithms that
transform input to output. A formal grammar (such as BNF) can be used to describe
the syntax of the programming language. However, a programming language does
not make a good specification language because it can represent only computable
functions. A specification language must have a semantic domain that is broader;
that is, the semantic domain of a specification language must be capable of ex-
pressing ideas such as, “For all x in an infinite set A, there exists a y in an infinite set
B such that the property P holds for x and y” [WIN90]. Other specification languages
apply semantics that enable the specification of system behavior. For example, a syn-
tax and semantics can be developed to specify states and state transition, and
events, along with their effect on state transition, synchronization and timing.



818

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

28.5.2 An Example Using OCL

In this section, OCL is used to help formalize the specification of the block handler
example, introduced in Section 28.1.3. The first step is to develop a UML model. For
this example we start with the class diagram found in Figure 28.3. This diagram spec-
ifies many relationships among the objects involved; however we must add OCL ex-
pressions to ensure that implementers of the system know more precisely what they
must ensure remains true as the system runs.

The OCL expressions we will add correspond to the six parts of the invariant dis-
cussed in Section 28.1.3. For each, we will repeat the invariant in English and then
give the corresponding OCL expression. It is considered good practice to provide
English text along with the formal logic; doing so helps the reader to understand the
logic, and also helps reviewers to uncover mistakes, e.g., situations where the Eng-
lish and the logic do not correspond.

1. No block will be marked as both unused and used.

context BlockHandler inv:

(self.used - >intersection(self.free)) —>isEmpty()

Note that each expression starts with the keyword context. This indicates the
element of the UML diagram that the expression constrains. Alternatively, the
software engineer could place the constraint directly on the UML diagram,
surrounded by braces {}. The keyword self here refers to the instance of Block-
Handler; in the following, as is permissible in OCL, we will omit the self.

2. Allthe sets of blocks held in the queue will be subsets of the collection of
currently used blocks.

context BlockHandler inv:
blockQueue—>forAll(aBlock8et | used— >includesAll(aBlock8et ))

Class diagram
for a block
handler

* 1
Block elements BlockSet
* | number J*
* |blockQueuve
free . used {orderd}
alBlocks | _ __ __ |
—————— = {subset}
{subset} |1 1 !
: BlockHandler [
addBlock| ).
removeBlock( )
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3. No elements of the queue will contain the same block numbers.

context BlockHandler inv:
blockQueue—>forAll(blockSet1, blockSet2 |
block8et! <> block8et2 implies

blockSetl.elements.number— >excludesAll(block8et2.elements.number))

The expression before implies is needed to ensure we ignore pairs where both
elements are the same block.

4. The collection of used blocks and blocks that are unused will be the total col-
lection of blocks that make up files.

context BlockHandler inv:

aliBlocks = used— >union(free)
5. The collection of unused blocks will have no duplicate block numbers.

context BlockHandler inv:

free—>isUnique(aBlock | aBlock.number)
6. The collection of used blocks will have no duplicate block numbers.

context BlockHandler inv:

used — >isUnique(aBlock | aBlock.number)

OCL can also be used to specify preconditions and postconditions of operations. For
example, consider operations that remove and add sets of blocks to the queue. Note
that the notation x@pre indicates the object x as it existed prior to the operation; this
is opposite to mathematical notation discussed earlier, where it is the x after the op-
eration that is specially designated (as x).

context BlockHandler::removeBlocks()
pre: blockQueue— >size{) >0
post: used = used@pre — blockQueue@pre — >first() and
free = free@pre— >union(blockQueue@pre— >first{)) and
blockQueue = blockQueue@pre — >excluding(blockQueue@pre — >first)

context BlockHandler::addBlocks(aBlockSet :BlockSet)
pre: used— >includesAll(aBlockSet.elements)
post: (blockQueue.elements = blockQueue.elements@pre
—>append(aBlock8et))and
used = used@pre and
free = free@pre

OCL is a modeling language, but it has all of the attributes of a formal language. OCL
allows the expression of various constraints, pre- and postconditions, guards, and
other characteristics that relate to the objects represented in various UML models.
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Z (properly pronounced as “zed") is a specification language that has evolved over the
past two decades to become widely used within the formal methods community. The
Z language applies typed sets, relations, and functions within the context of first-
order predicate logic to build schemas—a means for structuring a formal specification.

28.6.1 A Brief Overview of Z Syntax and Semantics

Z specifications are organized as a set of schemas—a boxlike structure that intro-
duces variables and specifies the relationship between these variables. A schema is
essentially the formal specification analog of the programming language compo-
nent. In the same way that components are used to structure a system, schemas are
used to structure a formal specification. '

A schema describes the stored data that a system accesses and alters. In the con-
text of Z, this is called the “state.” This usage of the term state in Z is slightly differ-
ent from the use of the word in the rest of this book.® In addition, the schema
identifies the operations that are applied to change state and the relationships that
occur within the system. The generic structure of a schema takes the form:

schemaName
- declarations

invariant

where declarations identify the variables that comprise the system state and the in-
variant imposes constraints on the manner in which the state can evolve. A sum-
mary of Z language notation is presented in Table 28.2.

28.6.2 An Example Using Z

In this section, we use the Z specification language to model the block handler ex-
ample, introduced earlier in this chapter. The following example of a schema de-
scribes the state of the block handler and the data invariant:

BlockHandler
used, free : P BLOCKS
BlockQueue : seq P BLOCKS
used N free = G N

6 Recall that in other chapters state has been used to identify an externally observable mode of be
havior for a system.
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TaBLE 28.2 SUMMARY OF Z NOTATION

Z nofation is based on typed set theory and firstorder logic. Z provides a construct, called a schema, to
describe a specification’s state space and operations. A schema groups variable declarations with a list
of predicates that consfrain the possible value of a variable. In Z, the schema X is defined by the form

X

declarations

predicates

Global functions and constants are defined by the form

declarations

predicates

The declaration gives the type of the function or constant, while the predicate gives it value. Only an
abbreviated sef of Z symbols is presented in this table.

Sets:

S PX S'is declared as a set of Xs.

xe S x is a member of S.

x&S x is not a member of S.

ScT Sis a subset of T: Every member of Sis alsoin T

SUT The union of Sand T: It contains every membes of S or T or both.
sNnT The intersection of S and T It contains every member of both Sand T
S\T The difference of Sand T: It contains every member of S except those also in T.
%] Empty set: It contains no members.

{x Singleton set: It contains just x.

N The set of natural numbers O, 1, 2, ...

S FX Sis declared as a finite set of Xs.

max {S) The maximum of the nonempty set of numbers S.

Functions:

fXs Y fis declared as a partial injection from Xto Y

dom f The domain of f: the set of values x for which f(x) is defined.

ran f The range of f. the set of values taken by f(x] as x varies over the domain of /.
F@® {x—>y}  Afunction that agrees with f except that x is mapped 1o y:

Py f A function like f, except that x is removed from its domain.

Logic:

PAQ Pand Q: It is true if both Pand Q are true.

P=Q Pimplies Q: It is true if either Qis true or Pis false.

85 =05 No components of schema S change in an operation.

R R B A R P AT AR T T

used U free = AliBlocks N\
Vi: dom BlockQueue * BlockQueue i C used N\
Vi, j: dom BlockQueue o i | j => BlockQueue i N BlockQueue j = &

As we have noted, the schema consists of two parts. The part above the central line
represents the variables of the state, while the part below the central line describes
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the data invariant. Whenever the schema specifies operations that change the state,
it is preceded by the A symbol. The following example of a schema describes the op-
eration that removes an element from the block queue:

RemoveBlocks
A BlockHandler

#BlockQueue > 0,

used’ = used \ head BlockQueue N\
Sfree’ = free U head BlockQueue N
BlockQueue’ = tail BlockQueue

The inclusion of A BlockHandler results in all variables that make up the state being
available for the RemoveBlocks schema and ensures that the data invariant will hold
before and after the operation has been executed.

The second operation, which adds a collection of blocks to the end of the queue,
is represented as

AddBlocks
A BlockHandler
Ablocks? : BLOCKS

Ablocks? C used

BlockQueue’ = BlockQueue  {(Ablocks?) A
used’ = used /\

Jfree' = free

By convention in Z, an input variable that is read but does not form part of the state
is terminated by a question mark. Thus, Ablocks?, which acts as an input parameter,
is terminated by a question mark.

SOFTWARE TOOLS

Formal Methods

e/
Q Obijective: The objective of formal methods in specification and automated correctness proving,
tools is to assist a software team in specification  usually by defining a specialized language for theorem
and correctness verification. proving. Many tools are not commercialized and have

Mechanics: Tools mechanics vary. In general, tools assist

been developed for research purposes.



